
<Author> Mihaela Irina Giurgea

<Author> Corina Lavinia Toma

Physics
Engine



<Keywords> animation, sprite, blocks, loops, graphs, 
 gravitational laws, collisions, free fall, friction force, 
oblique throwing, motion, momentum, operators, 
 variables 

<Disciplines> computer science, physics, mathematics, 
ICT

<Age level of the students> 14–16

<Hardware> computer

<Language> Scratch[1]

<Programming level> easy, medium

<Summary>
What would you think if we told you that your students could 
learn two seemingly very different subjects, physics and com-
puter science, more easily and also at the same time? In this 
unit, the ‘engine’, i.e. the Scratch[1] programming environment, 
is the magic tool that will help students to create interesting 
applications about everyday natural phenomena to better un-
derstand the laws of physics and improve their programming 
skills in the process. 

<Conceptual introduction> 
Why did we use Scratch[1]? Scratch is a visual programming 
environment that animates sprites using blocks on the com-
puter screen and helps students to create applications more 
easily than with classical programming environments (C++, 
Java, etc.). In addition, our ‘engine’ helps us to teach two sub-
jects that students consider difficult: physics and computer 
science. By removing the main obstacles, the impossibility to 
imagine (see) how a phenomenon actually works and the 
complicated syntax of coding, we have created an enjoyable 
new way of teaching.

The students who were involved in the development of this 
teaching unit already had some coding experience, so they 
were able to work out how to use Scratch. They use it in their 
regular as well as in their optional computer science lessons. 
Besides this, the physics knowledge required is part of the 
standard curriculum, and it is always useful to revise and 
 apply what you have learned. 

<What the students/teachers do>
The unit is all about alternating sequences of learning involv-
ing coding and physics.

First, the computer science teacher presented the basics for 
making a project in Scratch[1]. The students familiarised them-

selves with several key words related to the Scratch environ-
ment: stage, sprites, costumes and movement. You can follow 
the instructions and explanations for the first application 
taught in Scratch, an application without physics formulas.[2]

The students needed to understand the interactions between 
the sprites and their synchronisation as well as how a coordi-
nate system works. You can find a complete tutorial for Scratch 
online.[3]

To better understand the main algorithms in Scratch, the stu-
dents looked at exciting and interesting apps. When they saw 
the code behind these, they were sometimes surprised to dis-
cover that they could create such apps themselves. 

For the physics part of this unit, the students applied the 
 theoretical principles behind the phenomena of the world 
around them. For this reason, the physics teacher suggested 
a wide variety of topics[4], which the students then discussed: 
formulas needed, possible animation, the design, etc.

The students chose from those topics. A week later, we re-
ceived apps on the oblique throw of a ball, the free fall of an 
apple, the more complex fall of a water drop or the collision 
 between two balls, but also the movement of planets in the 
Solar System or even small games. 

At first, the students worked individually with some help from 
their teachers. When the projects needed improvement, the 
students were guided by the teachers and their classmates. 
(e1)

 e 1: Individual work

Then, everyone presented their project to the class and re-
ceived feedback from their peers. This made it easier for the 
students to work out which parts of the projects needed to be 
improved: the coding or the physics.

At the end of our project, the older students became teachers 
for the younger students (12–13 years old) by presenting 

<Info>

<2>Fundamental Science in 1’s and 0’s: Physics Engine



suitable applications and testing them during physics lessons. 
They enjoyed the responsibility and were very proud of their 
work. The older students also received suggestions from the 
younger students. The best of these student simulations are 
available on the Scratch platform.[2] 

The following sections contain examples of how we ap-
proached the physics and the programming parts. 

<Application 1: Free fall problem  
(Newton’s apple)>
Every student has heard of the free fall of this historical object: 
Newton’s apple.

The application in e2 is inspired by a classical problem: what 
is the distance travelled every second by Newton’s apple in 
free fall?

Physics theory

We consider a linear motion with constant gravitational accel-
eration g = 9.8 

m
s²  .

After a time t, the travelled distance h(t) of the apple is:  
h(t) = gt²

2
 .

The initial point h(0) is fixed on the tree branch from which the 
apple detached itself.

Then we calculate the travelled distance during a longer period, 

t + ∆t: h(t + ∆t) = g(t+ ∆t)2

2
 .

The general formula for the distance ∆h(t) , the distance trav-
elled by the apple during ∆t, is: 

∆h(t) = h(t+∆t)– h(t) = g(2t∆t + ∆t²)
2

 .

Then we use the data of the specific problem to customise the 
general formula; in this case, 1s for ∆t.  For the first second, 
t = tin = 0 results in ∆h₁ = 4.9 m, for the next second, t=1s 
 results in ∆h₂ = 3∙4.9 m = 14.7 m and so on. Through mathe-
matical induction, we can calculate the distance travelled dur-
ing the nth second considering  t = (n–1) s:  

∆hn = 9.8(2n–1)
2

 m.

Then the students can calculate, and also see in our animation, 
that the travelled distance increases by the same amount 
every second, 9.8 m.

How do we code this?

Variables used:
g: gravitational acceleration 
t: a counter for seconds (with values: 0, 1, 2, 3, 4, 5) 

 e 2: Free fall problem

Fundamental Science in 1’s and 0’s: Physics Engine<3>



h: the travelled distance after t seconds
h_in: the initial position of the apple 
delta_h: a list (array) with all distances travelled in every second
y: the y-coordinate of the apple 
Observation: in this app, the x-coordinate remains constant = 0, 
so you can move the trajectory more easily to the left or the 
right on the stage.

At the beginning, the apple is at the point with the coordinates 
(0,180). The initial point and the direction for the travelled dis-
tance h(t) are marked in e3.

Using a loop 5 times, we recalculated the distance that the 
 apple travelled after every second, working out the new 
 y-coordinate and considering the screen’s characteristics. See 
e4 for the encoding algorithm.

Challenge 

The students modify ∆t  and the travelled time t (our apple 
tree should be very tall—it is probably better to draw a tower 

building) or move the problem to another planet with its own 
gravitational acceleration. To create a complex project, they 
could add the friction force from the air and consider a variable 
gravitational acceleration by dropping the apple from a weather 
balloon at a higher altitude. 

<Application 2: Falling water drop>
On a rainy day, everyone can observe the fall of water drops. 
The students analysed the linear movement of one drop with 
our simulation. At the beginning, they saw that the fall of the 
water drop is accelerated, but with decreasing acceleration. 
 After some time, the drop’s velocity reached its limit, the termi-
nal velocity vt, when the acceleration reached zero. Then the 
water drop continued to move at this constant velocity. How 
can you explain this? 

Physics theory 

In the accelerated part of the movement, two forces act in op-
posite directions on the drop: the gravitational force G = mg 
(m: mass of the drop, g: gravitational acceleration) and the 
friction force Ff = kv (k: constant of proportionality, v: instan-
taneous velocity). The acceleration of the drop becomes: 
a = g –  k 

m
 v.

In our simulation, we consider a large drop that measures 
about 5 mm in diameter with the terminal velocity vt = 9.8 m 

s
.[5] 

In this case, the constant  k 
m

 =  1 
s

. The acceleration decreases 
when the velocity increases (see e5). The initial values are 
a = 9.8 m 

s²
 , v = 0 and y = 0.

We use a small program in C++[4] to calculate the instanta-
neous acceleration and velocity, where we consider the accel-
eration and the velocity constant for very small time intervals 
∆t (like 0.05 s). In this case, the velocity increases with 
∆v = a∆t and the travelled distance with ∆y = v∆t for each 
chosen ∆t (step-by-step method).

(x:0, y:180)

(x:240, y:0)(x:–240, y:0)

(x:0, y:–180)

h

 e 3: Orientation in the coordinate system

 e 4: Free fall problem
–30

–25

–20

–15

–10

–5

0
0.5 1 1.5 2 2.5 3 3.5 4

y(t) [m] v(t) [    ] a(t) [    ]

t[s]

m
s

m
s2

 e 5: Relation between travelled distance, velocity and 
acceleration

<4>Fundamental Science in 1’s and 0’s: Physics Engine



How do we code this? 

1. Paint a water drop sprite. 
2. Paint a horizontal green line at the bottom of the backdrop.
3. Make a sprite with the message ‘acceleration=0’, which 

appears when the acceleration has a value of about 0.  
4. Write the code for the drop sprite. The drop starts at the 

point (0, yinit). Using a loop, we recalculate a(t), v(t), y(t). 
We use the distance reached by the drop after every ∆t, 
working out the new y-coordinate and taking into account 
the screen’s characteristics. The acceleration decreases 
and when it is about 0, the loop is finished. At this point, 
the sprite message is shown on the screen. Next, the drop 
sprite falls at a constant velocity until it touches the green 
line of the backdrop. 

e6 provides a clear explanation of the code.

Challenge 

The students can improve this application if they add a vari-
able for the water drop mass (the water drop diameter can 
usually take on values from 1 mm to 5 mm)[6] and another 
type of friction force: Ff = kv² 

2
. 

The students could also add more drops of different masses 
and compare how they fall. 

<Application 3: Elastic collision>
There are many examples of bodies colliding around us. These 
collisions are complicated, but we consider the elastic colli-
sions with applicability in real life for billiard or steel balls, or in 

theory for collisions of molecules when the students study the 
ideal gas model.

Physics theory

The linear momentum and the kinetic energy are conserved 
for two balls with the mass m1 and m2, the initial velocities 
(v1
→) and (v2

→) and the final velocities (v1f
→)and (v2f

→). [e7]

m1v1
→ + m2 v2

→ =  m1v1f
→ + m2 v2f

→   and

 1 
2

 m1v2 
1  +  1 

2
 m2v2 

2  = 1 
2

 m1 v2 
1f + 1 

2
 m2 v2 

2f

If all motion takes place along the same line (movement on 
x-axis), we can use + or – signs to designate directions. Vector 
notation is not needed for the straight-line collision case, and 
the final velocities can be calculated with the following equations:

v1f   =   2 m1v1+m2v2

m1+m2
 – v1  and  v2f   =   2 m1v1+m2v2

m1+m2
 – v2 .

How do we code this? 

1. Choose two sprites for the balls (Ball1 and Ball2) and one 
sprite for the START button (Start sprite).

2. Use variables: mass1, mass2, velocity1, velocity2 (the 
mass and the initial velocity) for each object. Make the 
variable sliders visible and set the minimum and maximum 
value for them. 

3. Enter the mass and the initial velocities for each object. 
4. Press the START button. At this time, the sprite broadcasts 

a message for the ball sprites. When they  receive the 
 message, each ball moves towards the other using the 
well-known formula distance = speed × time. 

5. Calculate the final velocities of the balls and use them to 
move the balls in the right direction until a ball either 
touches the edge and leaves the scene or stays in its 
place because its new velocity is 0.

e8 and 9 provide a clear overview of how the two balls are 
animated in Scratch[1].

 e 6: Falling drop

mass1, velocity1

mass1, final velocity1

collision

mass2, final velocity2

mass2, velocity2

 e 7: Elastic collision

Fundamental Science in 1’s and 0’s: Physics Engine<5>



Two examples of using this application:

1. Choose one velocity 0 and equal mass for the balls; after 
this collision, you will observe that the moving ball stops 
and the other one moves with the same velocity that the 
first ball had before the impact.

2. The balls have different velocities and equal mass; after 
the collision, you will see that the objects take each other’s 
value for the velocity.

In both examples, the balls interchange their momentum.

Challenge

The students could change the size of the balls directly propor-
tional to their mass; they could make an application for a 
two-dimensional elastic collision (simulation for the Compton 
effect) or they could program a simulation for the collision of 
a ball with a wall (reflection law in mechanics).

You could continue the study with another application, i.e. an 
inelastic collision.[4]

<Conclusion>
<For the students>
Advantages 

The students learned physics theory in a more  enjoyable way 
and were able to understand the natural phenomena better 
using simulations in Scratch. They deepened their computer 
science and physics knowledge at the same time. Even though 
their projects were not all perfect, the students clearly im-
proved their coding and algorithmic thinking skills as a result. 

Disadvantages 

The students worked alone and more at home. They received 
feedback at school.

<For the teachers>
Advantages 

We observed a real interest in creating an original application 
and learning more than in classical lessons.

Disadvantages

It was difficult for us to coordinate the whole class because of 
the wide variety of physics topics and the very specific bugs 
in each application. We think that it would be better to give all 
the students the same topic and to encourage them to im-
prove it to the best of their varying levels of ability. 

<Cooperation activity>
Students from different schools and countries could solve the 
challenges of the projects and create new ones with other 
 ideas related to the original topic. All these applications could 
be put in the same place on the Scratch platform, and then a 
contest could be organised to determine the best of them. 
Teachers also need to take into account the complexity of the 
coding and the physics when they evaluate their students’ work.

<References>
[1] https://scratch.mit.edu/
[2] All additional materials are available at  

www.science-on-stage.de/coding-materials.
[3] https://en.scratch-wiki.info/
[4] https://scratch.mit.edu/users/SonS_Coding
[5] http://hypertextbook.com/facts/2007/EvanKaplan.shtml 

(29/11/2018)
[6] https://journals.ametsoc.org/doi/pdf/10.1175/1520-045

0%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2 
(29/11/2018)

 e 8: Elastic collision for Ball1

 e 9: Elastic collision for Ball2

<6>Fundamental Science in 1’s and 0’s: Physics Engine

https://scratch.mit.edu/
http://www.science-on-stage.de/coding-materials
https://en.scratch-wiki.info/
https://scratch.mit.edu/users/SonS_Coding
http://hypertextbook.com/facts/2007/EvanKaplan.shtml 
http://hypertextbook.com/facts/2007/EvanKaplan.shtml 
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/pdf/10.1175/1520-0450%281969%29008%3C0249%3ATVORA%3E2.0.CO%3B2


Main supporter of
Science on Stage Germany

A project by

Science on Stage –  
The European Network for Science Teachers
…  is a network of and for science, technology, engineering 

and mathematics (STEM) teachers of all school levels.
…  provides a European platform for the exchange of 

 teaching ideas.
…  highlights the importance of science and technology in 

schools and among the public.

The main supporter of Science on Stage is the Federation of 
German Employers' Association in the Metal and Electrical 
Engineering Industries (GESAMTMETALL) with its initiative 
think ING. 

Join in – find your country on
www.science-on-stage.eu
Facebook-square www.facebook.com/scienceonstageeurope
Twitter-square www.twitter.com/ScienceOnStage

Subscribe for our newsletter
 www.science-on-stage.eu/newsletter

Coding in
STEM Education

What European teachers can learn from each other

En
gl
is
h

Main supporter of
Science on Stage Germany

A project by

www.science-on-stage.de

En
gl
is
h

Co
di
ng
 i
n 
ST
EM
 E
du
ca
ti
on

ws18038_SonSDE_Coding in STEM EN Umschlag PROD.indd   76-78 01.02.19   14:10

<Imprint>
<Taken form>
Coding in STEM Education
www.science-on-stage.eu/coding

<Published by>
Science on Stage Deutschland e.V.
Am Borsigturm 15
13507 Berlin, Germany

<Revision and Translation>
Translation-Probst AG

<Design>
WEBERSUPIRAN.berlin

<Illustration>
Rupert Tacke, Tricom Kommunikation und Verlag GmbH

<Credits>
The authors have checked all aspects of copyright for 
the  images and texts used in this publication to the best of 
their knowledge.

<Please order from>
www.science-on-stage.de
info@science-on-stage.de

<ISBN PDF>
978-3-942524-58-2

This work is licensed under a Creative Commons  
Attribution-ShareAlike 4.0 International License:   
https://creativecommons.org/licenses/by-sa/4.0/.

First edition published in 2019
© Science on Stage Deutschland e.V.

 

http://www.science-on-stage.eu
http://www.facebook.com/scienceonstageeurope
http://www.twitter.com/ScienceOnStage
http://www.science-on-stage.eu/newsletter

